Последние объявления
- Конкурс на замещение вакантной должности старшего научного сотрудника в лаборатории волновой динамики многофазных сред ТюмФ ИТПМ СО РАН (06.12.2024 – 26.12.2024) (конкурс завершён)
- Конкурс на замещение вакантной должности научного сотрудника в лаборатории нефтегазовой механики ТюмФ ИТПМ СО РАН (06.12.2024 – 26.12.2024) (конкурс завершён)
- «Проблемы механики: теория, эксперимент и новые технологии» (Новосибирск, Шерегеш, 10 – 17 марта 2025 г.)
Итоги исследований
Достижения по основным научным направлениям
Основными научными направлениями Тюменского филиала ФГБУН Института теоретической и прикладной механики им. С.А. Христиановича СО РАН являются теоретические и экспериментальные исследования в области механики многофазных систем, а также приложения механики многофазных систем к добыче, транспорту, переработке углеводородного сырья и анализу безопасности технологических и энергетических систем. Целью исследований является получение новых научных результатов по многофазному течению в различных структурах, актуальных для развития приоритетных направлений науки и техники Российской Федерации.
За последние годы коллективом филиала проведены теоретические и экспериментальные исследования процессов, происходящих при течении многофазных систем в различных структурах, установлен ряд интересных и новых эффектов и закономерностей.
Основные публикации по результатам исследований
|
2019 |
2020 |
2021 |
2022 |
2023 |
Статьи в рецензируемых российских и международных периодических изданиях |
|||||
Монографии, учебники, учебные пособия |
- |
||||
Количество публикаций, индексируемых в базах РИНЦ, Web of Science и Scopus |
55 |
27 |
27 |
16 |
24 |
Патенты и зарегистрированные программы для ЭВМ |
2 |
- |
- |
1 |
- |
Результаты исследований
2019 год
Численное исследование распространения волн в высокопроницаемом цилиндрическом волноводе в пористой среде
Численно исследованы особенности волн, распространяющихся в высокопроницаемом цилиндрическом волноводе в пористой среде (рис. 1). Изучено влияние соотношения проницаемостей пористой среды внутри полости и окружающей среды, а также частоты сигнала на эволюцию волны давления внутри и вне полости.
Рис.1. Схема задачи
На рис. 2 показано изменение давления жидкости на оси полости, в окружающей пористой среде с глубиной и при удалении от волновода по горизонтали. Распространение волны сжатия сопровождается значительным искажением формы – расплыванием и затуханием. Вне волновода профили давления в волне также характеризуются снижением амплитуды и расплыванием импульса. При удалении от оси волновода уменьшение амплитуды волны происходит как в результате диссипации, так и из-за растекания энергии в силу цилиндрической симметрии рассматриваемой задачи (рис. 2в). С увеличением проницаемости волновода увеличивается скорость распространения и уменьшается затухание волн в волноводе, уменьшается глубина проникновения возмущений в окружающее пространство. Повышение частоты исходного сигнала приводит к увеличению скорости, усилению затухания импульса и уменьшению его расплывания.
Рис.2. Изменение давления в жидкости в высокопроницаемом цилиндрическом волноводе (а) и окружающей пористой среде (б, в) при распространении волны сжатия (вверху) и осциллирующего импульса основной частоты 1 кГц (внизу). Радиус волновода 0.1 м.
1. Бембель С.Р., Александров В.М., Пономарев А.А., Марков П.В., Родионов С.П. Оценка фильтрационно-емкостных свойств сложнопостроенных пород-коллекторов с использованием результатов микротомографии керна // Нефтяное хозяйство. – 2019. – № 8. – С. 86-89.
2. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Распространение импульсных возмущений в цилиндрическом волноводе в насыщенной пузырьковой жидкостью пористой среде // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. – 2019. – Т. 5, № 1. – С. 111-122.
3. Губайдуллин А.А., Пяткова А.В. Акустическое течение в цилиндрической полости при варьировании ее радиуса и граничных условий // Теплофизика и аэромеханика. – 2019. – Т. 26, № 6. – С. 941-951.
4. Косяков В.П., Губайдуллин А.А., Легостаев Д.Ю. Методика моделирования разработки газового месторождения на основе иерархии математических моделей // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. – 2019. – Т. 5, № 3. – С. 69-82.
5. Мусакаев Н.Г., Ахметзянов Р.Р. К вопросу разрушения стойких нефтяных эмульсий с целью обеспечения качественной подготовки нефти // Известия высших учебных заведений. Нефть и газ. – 2019. – № 2. – С. 73-80.
6. Мусакаев Н.Г., Бородин С.Л., Бельских Д.С. Расчет эффективности теплового воздействия на нефтенасыщенный пласт // Нефтепромысловое дело. – 2019. – № 4. – С. 41-44.
7. Мусакаев Н.Г., Бородин С.Л., Родионов С.П. Математическая модель двухфазного нисходящего течения теплоносителя в нагнетательной скважине // Вестник Южно-Уральского государственного университета. Математическое моделирование и программирование. – 2019. – Т. 12, № 3. – С. 52–62.
8. Мусакаев Н.Г., Сахипов Д.М., Круглов И.А. Экспериментальные исследования эффективности применения полимерных составов для увеличения нефтеотдачи пластов // Известия высших учебных заведений. Нефть и газ. – 2019. – № 4. – С. 113-121.
9. Мусакаев Н.Г., Сахипов Д.М., Круглов И.А. Исследование метода увеличения нефтеотдачи пластов с использованием потокорегулирующих составов // Нефтепромысловое дело. – 2019. – № 10. – С. 28-31.
10. Мусакаев Н.Г., Сахипов Д.М., Круглов И.А., Халитов А.Н. Оценка эффективности работ по выравниванию профиля приёмистости нагнетательных скважин на Самотлорском месторождении // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2019. – № 10. – С. 37-42.
11. Мусакаев Н.Г., Хасанов М.К., Бородин С.Л. Построение аналитического решения задачи об образовании газового гидрата в пористом пласте // Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры». – 2019. – Т. 172. – С. 93-98.
12. Нигматулин Р.И., Аганин А.А., Топорков Д.Ю. Зависимость коллапса парового пузырька в горячем тетрадекане от давления жидкости // Теплофизика и аэромеханика. – 2019. – Т. 26, № 6. – С. 931-940.
13. Родионов С.П., Пичугин О.Н., Косяков В.П., Ширшов Я.В. О выборе участков нефтяных месторождений для эффективного применения циклического заводнения // Нефтяное хозяйство. – 2019. – № 4. – С. 58-61.
14. Симонов О.А., Филимонова Л.Н. Численное исследование влияния поверхностного натяжения на структуру течения в цилиндрическом сосуде с учетом максимума плотности воды // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. – 2019. – Т. 5, № 3. – С. 131-146.
15. Хасанов М.К., Столповский М.В., Мусакаев Н.Г., Ягафарова Р.Р. Численные решения задачи об образовании газогидрата при закачке газа в частично насыщенную льдом пористую среду // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. – 2019. – Т. 29, Вып. 1. – C. 92-105.
16. Amelkin S.V. Modeling of dynamics of a strongly supersaturated gas-liquid solution globule in a porous medium // AIP Conference Proceedings. – 2019. – Vol. 2125. – 030109.
17. Gaydamak I., Pichugin O., Rodionov S., Panarina S. Application of decision trees for candidate well selection for geological and technical measures // Proceeding of the 81st EAGE Conference and Exhibition 2019, London, United Kingdom, June 3-6, 2019. – Vol. 2019. – P. 1-5.
18. Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N. Rarefaction wave propagation in a waveguide in a hydrate-containing porous medium // AIP Conference Proceedings. – 2019. – Vol. 2125. – 020017.
19. Gubaidullin A.A., Gubkin A.S. Method of direct numerical simulation of intermodal energy transfer by oscillations of bubble // AIP Conference Proceedings. – 2019. – Vol. 2125. – 030110.
20. Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N. Numerical investigation of wave propagation in high-permeable cylindrical waveguide in porous medium // Journal of Physics: Conference Series. – 2019. – Vol. 1404. – 012020.
21. Gubkin A.S., Igoshin D.E., Filimonova L.N. Calculation of two-phase flow in micro- channels of variable section with account of compressibility of one phase // AIP Conference Proceedings. – 2019. – Vol. 2125. – 030111.
22. Igoshin D.E., Legostaev D.Y. Calculation of rocks permeability based on periodic models of porous media // Journal of Physics: Conference Series. – 2019. – Vol. 1404. – 012022.
23. Khasanov M.K., Stolpovsky M.V., Musakaev N.G., Ruzanov A.S. Solution of the Problem of the Associated Petroleum Gas Injection into a Porous Medium Saturated with Methane and Ice // IOP Conference Series: Earth and Environmental Science. – 2019. – Vol. 224. – 012004.
24. Kosyakov V.P., Legostaev D.Yu. Computational technology for solution of the reverse problem of filtration theory for oil fields with an aquifer // AIP Conference Proceedings. – 2019. – Vol. 2125. – 030112.
25. Legostaev D.Y., Botalov A.Yu., Rodionov S.P. Numerical simulation of fluid flow in a saturated fractured porous media based on the linear poroelasticity model // Journal of Physics: Conference Series. – 2019. – Vol. 1404. – 012028.
26. Markov P., Rodionov S. Numerical Simulation Using Finite-Difference Schemes with Continuous Symmetries for Processes of Gas Flow in Porous Media // Computation. – 2019. – Vol. 7, No. 3. – 45.
27. Musakaev E.N., Rodionov S.P., Legostaev D.Y., Kosyakov V.P. Parameter identification for sector filtration model of n oil reservoir with complex structure // AIP Conference Proceedings. – 2019. – Vol. 2125. – 030113.
28. Musakaev N.G., Borodin S.L., Belskikh D.S. The problem of heat exposure to a closed hydrate-saturated area of a porous stratum // AIP Conference Proceedings. – 2019. – Vol. 2125. – 020021.
29. Musakaev N.G., Borodin S.L., Belskikh D.S. Numerical research of the gas extraction methods from a deposit saturated with methane its hydrate // AIP Conference Proceedings. – 2019. – Vol. 2125. – 030114.
30. Musakaev N.G., Khasanov M.K. Analytical solution of the problem of hydrate formation in a porous medium with a temperature jump at the phase transition front // Journal of Physics: Conference Series. – 2019. – Vol. 1268. – 012051.
31. Musakaev N.G., Khasanov M.K. On the issue of the solutions existence of the problem of gas hydrate dissociation in a porous medium with the formation of an extended region of phase transitions // Journal of Physics: Conference Series. – 2019. – Vol. 1404. – 012034. d
32. Pyatkov A. A., Rodionov S.P., Kosyakov V.P., Musakaev N.G. Study of filtration processes of a two-phase fluid in a zonal-inhomogeneous fractured-porous medium // Journal of Physics: Conference Series. – 2019. – Vol. 1404. – 012039.
33. Pyatkova A.V., Gubaidullin A.A. Acoustic Streaming and Temperature Field in the Cavity with Isothermal and Adiabatic Boundary Conditions at the Ends // Lobachevskii Journal of Mathematics. – 2019. – Vol. 40, No. 11. – P. 1994-1999.
34. Rodionov S.P., Kosyakov V.P., Musakaev E.N. Selection of waterflooding systems for enhanced oil recovery by solving two-phase filtration problem // Journal of Physics: Conference Series. – 2019. – Vol. 1158. – 042003.
35. Rodionov S., Pichugin O., Kosyakov V., Musakaev N., Schesnyak E. A method for selection of areas for cyclic waterflooding and its application in some oil fields // Proceeding of the 81st EAGE Conference and Exhibition 2019, London, United Kingdom, June 3-6, 2019. – Vol. 2019. – P. 1-5.
2020 год
Исследование распространения волн давления в слоисто-неоднородном волноводе в пористой среде
Рассмотрена двухмерная осесимметричная задача о распространении волны давления в пористой среде, содержащей двухслойный пористый волновод. Волна инициируется импульсом давления в полости с жидкостью, входит и распространяется в пористой среде и волноводе (рис. 1).
Рис. 1. Cхема, иллюстрирующая постановку задачи.
Исследованы особенности эволюции волн давления, выполнен анализ влияния соотношения проницаемостей слоев и окружающей пористой среды, а также характеристик исходного возмущения на эволюцию волны давления в волноводе и в окружающей пористой среде (рис. 2, 3). Установлено, что после проникновения возмущения из полости в неоднородную слоистую пористую среду прошедшие волны взаимодействуют на границах слоев, что создает сложную волновую картину. Наибольшая скорость распространения и наименьшее затухание сигнала наблюдается в слое, имеющем наиболее высокую проницаемость.
Рис. 2. Изменение давления в жидкости при распространении импульса в пористой среде ПС (а, г), в высокопроницаемом ВПС (б) и низкопроницаемом слое НПС (в) при удалении от полости.
Рис. 3. Поле давления в жидкости ∆pf/p0 при распространении импульса в окружающей полость слоистой пористой среде.
МОНОГРАФИИ, УЧЕБНИКИ, УЧЕБНЫЕ ПОСОБИЯ
1. Губайдуллин А.А. Введение в механику сплошной среды: учебное пособие. – Тюмень: Издательство Тюменского государственного университета, 2020. – 208 с.
2. Мусакаев Н.Г. Механика многофазных сред: течения газожидкостных смесей в каналах. – 2-е изд., перераб. и доп. – М.: Юрайт, 2020. – 147 с.
3. Мусакаев Н.Г., Хасанов М.К., Бородин С.Л. Особенности образования и разложения газовых гидратов в пористых средах: монография. – Тюмень: Издательство Тюменского индустриального университета, 2020. – 163 с.
1. Бородин С.Л., Бельских Д.С. Математическое моделирование равновесного полного замещения метана углекислым газом в газогидратном пласте при отрицательных температурах // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. – 2020. – Том 6, № 2 (22). – С. 63-80. DOI: 10.21684/2411-7978-2020-6-2-63-80
2. Губайдуллин А.А., Болдырева О.Ю. Волны в пористой среде со слоем, содержащим газовый гидрат // Прикладная механика и техническая физика. – 2020. – Том 61, № 4 (362). – С. 31-38. DOI: 10.15372/PMTF20200404
3. Мусакаев Н.Г., Бородин С.Л. Расчет термодинамических параметров опускного течения теплоносителя в скважине с учетом протаивания многолетнемерзлых пород // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2020. – Том 331, № 3. – С. 135-144. DOI: 10.18799/24131830/2020/3/2556
4. Мусакаев Н.Г., Сахипов Д.М., Круглов И.А. Разработка и исследование комбинированной системы для ликвидации поглощений, ремонтно-изоляционных работ и ограничения водопритока в добывающих скважинах // Нефтепромысловое дело. – 2020. – № 6 (618). – С. 33-37. DOI: 10.30713/0207-2351-2020-6(618)-33-37
5. Amelkin S.V. The pulsed displacement of a viscous fluid from a porous particle during degassing of dispersed drops of a highly supersaturated gas – Liquid solution // AIP Conference Proceedings. – 2020. – Vol. 2288. – 030024. DOI: 10.1063/5.0028708
6. Gubaidullin A.A., Pyatkova A.V. The Effect of Nonlinearity on Acoustic Streaming in Cylindrical Cavities of Different Diameters // Lobachevskii Journal of Mathematics. – 2020. – Vol. 41, No. 7. – Pp. 1196-1201. DOI: 10.1134/S1995080220070185
7. Gubkin A.S., Igoshin D.E. Filtration and capacitive properties of two-dimensional model porous media formed by random structures // AIP Conference Proceedings. – 2020. – Vol. 2288. – 030005. DOI: 10.1063/5.0028407
8. Khasanov M.K., Musakaev N.G. The Conditions for the Existence of an Extended Region of Gas Hydrate Formation in a Porous Medium // Lobachevskii Journal of Mathematics. – 2020. – Vol. 41, No. 7. – Pp. 1222-1227. DOI: 10.1134/S1995080220070203
9. Khasanov M.K., Musakaev N.G., Stolpovsky M.V., Kildibaeva S.R. Mathematical Model of Decomposition of Methane Hydrate during the Injection of Liquid Carbon Dioxide into a Reservoir Saturated with Methane and Its Hydrate // Mathematics. – 2020. – Vol. 8, No. 9. – 1482. DOI: 10.3390/math8091482
10. Khasanov M.K., Rafikova G.R., Musakaev N.G. Mathematical Model of Carbon Dioxide Injection into a Porous Reservoir Saturated with Methane and its Gas Hydrate // Energies. – 2020. – Vol. 13, No. 2. – 440. DOI: 10.3390/en13020440
11. Kosyakov V.P. Structural and parametric identification of an aquifer model for an oil reservoir // Lobachevskii Journal of Mathematics. – 2020. – Vol. 41, No. 7. – Pp. 1242-1247. DOI: 10.1134/S1995080220070239
12. Legostaev D. Yu. and Rodionov S. P. Numerical simulation of fluid flow in fractured poroelastic medium integrating dual porosity - Dual permeability and discrete fractures models // AIP Conference Proceedings. – 2020. – Vol. 2288. – 030023. DOI: 10.1063/5.0028334
13. Musakaev N., Borodin S., Rodionov S., Schesnyak E. Mathematical Modeling of the Hot Steam-Water Mixture Flow in an Injection Well // Advances in Intelligent Systems and Computing. – 2020. – Vol. 987. – Pp. 341-348. DOI: 10.1007/978-3-030-19501-4_34
14. Musakaev N.G., Borodin S.L. Computational Study of a Thermal Effect on a Porous Reservoir Saturated with Carbon Dioxide Hydrate // AIP Conference Proceedings. – 2020. – Vol. 2288. – 020010. DOI: 10.1063/5.0029143
15. Musakaev N.G., Borodin S.L. Numerical Research of the Gas Hydrate Decomposition in a Porous Reservoir with Impermeable Boundaries // Lobachevskii Journal of Mathematics. – 2020. – Vol. 41, No. 7. – Pp. 1267-1271. DOI: 10.1134/S1995080220070318
16. Musakaev N.G., Borodin S.L., Belskikh D.S. Mathematical modeling of thermal impact on hydrate-saturated reservoir // Journal of Computational Methods in Sciences and Engineering. – 2020. – Vol. 20, No. 1. – Pp. 43-51. DOI: 10.3233/JCM-193673
17. Musakaev N.G., Borodin S.L., Gubaidullin A.A. Methodology for the Numerical Study of the Methane Hydrate Formation During Gas Injection into a Porous Medium // Lobachevskii Journal of Mathematics. – 2020. – Vol. 41, No. 7. – Pp. 1272-1277. DOI: 10.1134/S199508022007032X
18. Musakaev N.G., Khasanov M.K. Solution of the Problem of Natural Gas Storages Creating in Gas Hydrate State in Porous Reservoirs // Mathematics. – 2020. – Vol. 8, No. 1. – 36. DOI: 10.3390/math8010036
19. Rodionov S.P., Kosyakov V.P., Musakaev E.N. An upgridding technique for geocellular models, taking into account the uncertainty of reservoir parameters // Lobachevskii Journal of Mathematics. – 2020. – Vol. 41, No. 7. – Pp. 1289-1294. DOI: 10.1134/S1995080220070379
МАТЕРИАЛЫ КОНФЕРЕНЦИЙ
1. Бельских Д.С., Мусакаев Н.Г. Математическое моделирование двухфазного течения в пористом коллекторе с учетом разложения газового гидрата // Тезисы докладов XIV Всероссийской конференции молодых ученых «Проблемы механики: теория, эксперимент и новые технологии», Новосибирск-Шерегеш, 28 февраля – 6 марта 2020. – Новосибирск: Издательство «Параллель», 2020. – С. 21-22.
2. Бородин С.Л., Бельских Д.С. Математическое моделирование и численная реализация задачи фильтрации в пористой среде, изначально насыщенной метаном и его гидратом, метана и углекислого газа, с учетом образования или разложения гидратов этих газов // Тезисы докладов XIV Всероссийской конференции молодых ученых «Проблемы механики: теория, эксперимент и новые технологии», Новосибирск-Шерегеш, 28 февраля – 6 марта 2020. – Новосибирск: Издательство «Параллель», 2020. – С. 27-28.
3. Бородин С.Л., Бельских Д.С. Численные эксперименты по фильтрации в пористой среде, изначально насыщенной метаном и его гидратом, метана и углекислого газа, с учетом образования или разложения гидратов этих газов // Тезисы докладов XIV Всероссийской конференции молодых ученых «Проблемы механики: теория, эксперимент и новые технологии», Новосибирск-Шерегеш, 28 февраля – 6 марта 2020. – Новосибирск: Издательство «Параллель», 2020. – С. 29-30.
4. Бородин С.Л., Хасанов М.К. Методика расчета параметров процесса замещения CO2–CH4 в метангидрате при разработке газогидратной залежи // Материалы Всероссийской научной конференции с международным участием «Актуальные проблемы механики сплошной среды – 2020», Казань, 28 сентября – 2 октября 2020. – Казань: Изд-во Академии наук Республики Татарстан, 2020. – С. 74-76.
5. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Волны в пористых слоистых средах // Материалы Всероссийской научной конференции с международным участием «Актуальные проблемы механики сплошной среды – 2020», Казань, 28 сентября – 2 октября 2020. – Казань: Изд-во Академии наук Республики Татарстан, 2020. – С. 139-143.
6. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Распространение волн в высокопроницаемом слое в пористой среде, пересекаемом заполненной жидкостью цилиндрической полостью // Многофазные системы. – 2020. – № 1–2. – С. 34. DOI: 10.21662/mfs2020.1
7. Легостаев Д.Ю. Математическое моделирование трещиноватых пороупругих сред на основемоделей двойной пористости - двойной проницаемости и дискретных трещин // Материалы Международного молодежного научного форума «Ломоносов-2020», 10-27 ноября 2020. – М.: МАКС Пресс, 2020. Электронный ресурс https://lomonosov-msu.ru/archive/Lomonosov_2020/data/19363/109447_uid345912_report.pdf
8. Легостаев Д.Ю., Родионов С.П. Численное исследование влияния напряженно-деформированного состояния трещиновато-пористой среды на фильтрацию жидкости // Тезисы докладов XIV Всероссийской конференции молодых ученых «Проблемы механики: теория, эксперимент и новые технологии», Новосибирск-Шерегеш, 28 февраля – 6 марта 2020. – Новосибирск: Издательство «Параллель», 2020. – С. 110-111.
9. Мусакаев Н.Г., Бельских Д.С. Численное исследование неизотермического газожидкостного течения в пористой среде при наличии фазовых переходов // Материалы Всероссийской научной конференции с международным участием «Актуальные проблемы механики сплошной среды – 2020», Казань, 28 сентября – 2 октября 2020. – Казань: Изд-во Академии наук Республики Татарстан, 2020. – С. 302-305.
10. Мусакаев Н.Г., Бородин С.Л. Компьютерное моделирование процессов, происходящих в пористой среде при закачке метана в насыщенный газом и водой пласт // Тезисы докладов XIV Всероссийской конференции молодых ученых «Проблемы механики: теория, эксперимент и новые технологии», Новосибирск-Шерегеш, 28 февраля – 6 марта 2020. – Новосибирск: Издательство «Параллель», 2020. – С. 130.
11. Мусакаев Н.Г., Косяков В.П. Исследование процессов неизотермической фильтрации двухфазной жидкости в трещиновато-пористых средах // Материалы Всероссийской научной конференции с международным участием «Актуальные проблемы механики сплошной среды – 2020», Казань, 28 сентября – 2 октября 2020. – Казань: Изд-во Академии наук Республики Татарстан, 2020. – С. 305-308.
12. Мусакаев Н.Г., Хасанов М.К., Губайдуллин А.А. Необходимые условия формирования объемной области образования гидрата при закачке газа в насыщенный метаном и водой пласт // Многофазные системы. – 2020. – № 1-2. – С. 69. DOI: 10.21662/mfs2020.1
13. Симонов О.А., Филимонова Л.Н. Конвективное течение воды в пористой среде вблизи вертикального охлаждающего устройства // Многофазные системы. – 2020. – № 1–2. – С. 92. DOI: 10.21662/mfs2020.1
14. Gubaidullin A.A., Musakaev N.G., Boldyreva O.Yu., Borodin S.L. Waves and heat-mass exchange in hydrate saturated porous systems // Abstracts of XX International Conference on the Methods of Aerophysical Research, Novosibirsk, November 1-7, 2020. – Novosibirsk: Parallel, 2020. – Pt. I. – P. 77.
15. Musakaev N.G., Borodin S.L. Numerical research of the hot steam-water mixture injection process into an oil-saturated reservoir // Abstracts of XX International Conference on the Methods of Aerophysical Research, Novosibirsk, November 1-7, 2020. – Novosibirsk: Parallel, 2020. – Pt. I. – P. 150.
16. Musakaev N.G., Borodin S.L., Khasanov M.K. Numerical research of the effectiveness of various methods of methane extraction from a gas hydrate deposit // Abstracts of XX International Conference on the Methods of Aerophysical Research, Novosibirsk, November 1-7, 2020. – Novosibirsk: Parallel, 2020. – Pt. II. – P. 128.
2021 год
Исследовано влияние напряженно-деформированного состояния трещиновато-пористой среды на ее фильтрационные характеристики.
Изучено изменение фильтрационных характеристик трещиновато-пористой среды при нагружении, вызывающем изменение ее напряженно-деформированного состояния. В двумерной постановке рассмотрены системы трещин с различной степенью связности. На рис. а,б,в представлены варианты систем по мере уменьшения связности. Результаты исследования (рис. г) показали, что проницаемость среды преимущественно определяется степенью связности системы трещин. Влияние сжимающих напряжений на проницаемость увеличивается по мере увеличения связности системы трещин. Так, например, для вариантов (а) и (б) при увеличении внешней нагрузки с 0 до 15 МПа проницаемость уменьшилась на 33 и 25 % соответственно. В случае слабой связности трещин (в) увеличение внешней нагрузки на проницаемость практически не повлияло.
Рис. Зависимость проницаемости трещиновато-пористой среды от величины сжимающих напряжений (г) для случайно сгенерированных систем трещин (а,б,в).
1. Виноградов К.Э., Пустошкин Р.В., Родионов С.П. Особенности учета гистерезиса проницаемости и сжимаемости порового пространства низкопроницаемых коллекторов при гидродинамическом моделировании // Геология, геофизика и разработка нефтяных и газовых месторождений. 2021. № 11 (359). С. 35-38. DOI: 10.33285/2413-5011-2021-11(359)-35-38
2. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Об упругих свойствах пористых сред с газовыми гидратами // Успехи кибернетики. 2021. Том 2. № 2. С. 82-89. DOI: 10.51790/2712-9942-2021-2-2-7
3. Косяков В.П., Легостаев Д.Ю., Мусакаев Э.Н. Задача совместного использования теории фильтрации и элементов машинного обучения для решения обратной задачи восстановления гидропроводности нефтяного месторождения // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2021. Том 7. № 2 (26). С. 113-129. DOI: 10.21684/2411-7978-2021-7-2-113-129
4. Легостаев Д.Ю., Родионов С.П. Численное исследование двухфазной фильтрации в трещиновато-пористой среде на основе моделей пороупругости и дискретных трещин // Прикладная механика и техническая физика. 2021. Том 62. № 3 (367). С. 126-136. DOI: 10.15372/PMTF20210312
5. Мусакаев Н.Г., Бельских Д.С. Численное исследование процесса разложения газового гидрата при тепловом воздействии на гидратосодержащую область пористого пласта // Ученые записки Казанского университета. Серия: Физико-математические науки. 2021. Том 163. № 2. С. 153-166. DOI: 10.26907/2541-7746.2021.2.153-166
6. Мусакаев Н.Г., Бородин С.Л., Хасанов М.К. Численное исследование процесса образования газового гидрата в пористом коллекторе // Прикладная механика и техническая физика. 2021. Том 62. № 4 (368). С. 57-67. DOI: 10.15372/PMTF20210406
7. Огай В.А., Мусакаев Н.Г., Юшков А.Ю., Довбыш В.О., Васильев М.А. Методика экспериментального исследования газожидкостного потока с пенообразующими поверхностно-активными веществами в вертикальном канале // Известия высших учебных заведений. Нефть и газ. 2021. № 6. С. 76-89. DOI: 10.31660/0445-0108-2021-6-76-89
8. Симонов О.А., Филимонова Л.Н. Влияние максимума плотности воды на охлаждение водонасыщенной пористой среды // Прикладная механика и техническая физика. 2021. Том 62. № 4 (368). С. 68-79. DOI: 10.15372/PMTF20210407
9. Borodin S.L., Khasanov M.K. Methodology for Calculating the Parameters of the CO2–CH4 Replacement Process in Methane Hydrate During the Gas Hydrate Deposits Development // Lobachevskii Journal of Mathematics. 2021. Vol. 42. No. 8. Pp. 1961-1968. DOI: 10.1134/S1995080221080084
10. Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N. Elastic Waves in a Porous Medium with Layers of Different Permeabilities // Lobachevskii Journal of Mathematics. 2021. Vol. 42. No. 8. Pp. 1977-1981. DOI: 10.1134/S1995080221080126
11. Khasanov M.K., Musakaev N.G. Mathematical Modeling of the Process of Gas Injection into a Reservoir with the Formation of Gas Hydrate and Melting of Ice // Lobachevskii Journal of Mathematics. 2021. Vol. 42. No. 9. Pp. 2151-2158. DOI: 10.1134/S1995080221090158
12. Musakaev E.N., Rodionov S.P., Musakaev N.G. Hierarchical approach to identifying fluid flow models in a heterogeneous porous medium // Mathematics. 2021. Vol. 9. No. 24. 3289. DOI: 10.3390/math9243289
13. Musakaev N.G., Belskikh D.S., Borodin S.L. Mathematical Model and Method for Solving the Problem of Non-Isothermal Gas and Liquid Filtration Flow During Dissociation of Gas Hydrates // Lobachevskii Journal of Mathematics. 2021. Vol. 42. No. 9. Pp. 2198-2204. DOI: 10.1134/S1995080221090225
14. Musakaev N.G., Borodin S.L. Mathematical Modeling of the Gas Hydrate Formation Process in a Zonal Heterogeneous Porous Reservoir // Lobachevskii Journal of Mathematics. 2021. Vol. 42. No. 9. Pp. 2205-2210. DOI: 10.1134/S1995080221090237
15. Musakaev N.G., Borodin S.L. Numerical research of the hot steam-water mixture injection process into an oil-saturated reservoir // AIP Conference Proceedings 2351, 020005 (2021). DOI: 10.1063/5.0052043
16. Musakaev N.G., Borodin S.L., Khasanov M.K. Numerical research of the effectiveness of various methods of methane extraction from a gas hydrate deposit // AIP Conference Proceedings 2351, 030027 (2021). DOI: 10.1063/5.0052048
МАТЕРИАЛЫ КОНФЕРЕНЦИЙ
1. Болдырева О.Ю., Губайдуллин А.А., Дудко Д.Н. Особенности линейных волн в пористых средах с газовыми гидратами // Актуальные вопросы теплофизики, энергетики и гидрогазодинамики в условиях Арктики : тезисы Всероссийской научно-практической конференции с международным участием, посвященной 85-летию со дня рождения заслуженного деятеля науки РФ и ЯАССР, д. т. н., профессора Э. А. Бондарева, Якутск, 12–17 июля 2021 года. – Киров: Межрегиональный центр инновационных технологий в образовании, 2021. С. 209-210.
2. Бородин С.Л. Модельная тепловая задача о разложении гидрата метана в замкнутом пористом резервуаре // Актуальные вопросы теплофизики, энергетики и гидрогазодинамики в условиях Арктики : тезисы Всероссийской научно-практической конференции с международным участием, посвященной 85-летию со дня рождения заслуженного деятеля науки РФ и ЯАССР, д. т. н., профессора Э. А. Бондарева, Якутск, 12–17 июля 2021 года. – Киров: Межрегиональный центр инновационных технологий в образовании, 2021. С. 75.
3. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Компьютерное моделирование распространения возмущений давления в гидратосодержащих пористых образцах // Международная конференция «Математические идеи П. Л. Чебышёва и их приложения к современным проблемам естествознания», приуроченная к 200-летию со дня рождения великого русского математика, академика П. Л. Чебышёва : Материалы конференции. / (Обнинск, 14–18 мая; Сургут, 23–29 мая 2021 г.): Материалы конференции. Под ред. акад. В.Б. Бетелина. — Калуга: Калужский печатный двор, 2021. С. 216-217. DOI: 10.51790/chebconf-2021
4. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Линейные волны в пористых и трещиновато-пористых средах // Тезисы докладов XVII Всероссийского Семинара с международным участием «Динамика Многофазных Сред». Новосибирск, ИТПМ СО РАН, 2021. С. 82.
5. Игошин Д.Е., Губкин А.С., Кусайко Г.Н. Анизотропия проницаемости в периодических пористых средах // Тезисы докладов XVII Всероссийского семинара с международным участием «Динамика многофазных сред», Новосибирск, 27 августа – 04 сентября 2021. Новосибирск: Параллель, 2021. С. 51.
6. Легостаев Д.Ю., Родионов С.П. Совместное гидродинамическое и геомеханическое моделирование трещиновато-пористых сред // Решение прикладных задач нефтегазодобычи на основе классических работ А.П. Телкова и А.Н. Лапердина. Материалы национальной научно-технической конференции. Отв. редактор С.И. Грачев. Тюмень, 2021. С. 69-70.
7. Мусакаев Н.Г., Бородин С.Л. Численное исследование процесса образования газового гидрата в пласте с зональной неоднородностью // Тезисы докладов XVII Всероссийского семинара с международным участием «Динамика многофазных сред», Новосибирск, 27 августа – 04 сентября 2021. Новосибирск: Параллель, 2021. С. 49.
8. Мусакаев Н.Г., Бородин С.Л., Косяков В.П. Моделирование процесса образования газогидрата в зонально-неоднородном пористом пласте // Актуальные вопросы теплофизики, энергетики и гидрогазодинамики в условиях Арктики : тезисы Всероссийской научно-практической конференции с международным участием, посвященной 85-летию со дня рождения заслуженного деятеля науки РФ и ЯАССР, д. т. н., профессора Э. А. Бондарева, Якутск, 12–17 июля 2021 года. – Киров: Межрегиональный центр инновационных технологий в образовании, 2021. С. 296-297.
9. Мусакаев Н.Г., Бородин С.Л., Огай В.А., Юшков А.Ю. Исследование восходящего газожидкостного потока с пенообразующими поверхностно-активными веществами в вертикальном канале // Актуальные вопросы теплофизики, энергетики и гидрогазодинамики в условиях Арктики : тезисы Всероссийской научно-практической конференции с международным участием, посвященной 85-летию со дня рождения заслуженного деятеля науки РФ и ЯАССР, д. т. н., профессора Э. А. Бондарева, Якутск, 12–17 июля 2021 года. – Киров: Межрегиональный центр инновационных технологий в образовании, 2021. С. 200-201.
10. Мусакаев Э.Н., Косяков В.П. Адаптация коэффициентов продуктивности нагнетательных и добывающих скважин для системы секторных моделей // Решение прикладных задач нефтегазодобычи на основе классических работ А.П. Телкова и А.Н. Лапердина. Материалы национальной научно-технической конференции. Отв. редактор С.И. Грачев. Тюмень, 2021. С. 77-78.
11. Симонов О.А., Филимонова Л.Н. Влияние максимума плотности воды на охлаждение водонасыщенной пористой среды // Забабахинские научные чтения: сборник материалов XV Международной конференции 27 сентября – 1 октября 2021. Снежинск: Издательство РФЯЦ – ВНИИТФ, 2021. С. 209-210.
12. Симонов О.А., Филимонова Л.Н. Влияние максимума плотности воды на темпы охлаждения водонасыщенных пористых сред // Международная конференция «Современные исследования трансформации криосферы и вопросы геотехнической безопасности сооружений в Арктике 2021», 8-12 ноября 2021. Салехард. С. 382-385.
13. Симонов О.А., Филимонова Л.Н. Конвективное течение воды в пористой среде с учетом максимума плотности воды // Тезисы докладов Всероссийской конференции молодых ученых-механиков (YSM-2021). Сочи, «Буревестник» МГУ, 3-12 сентября 2021 г. С. 145.
14. Хасанов М.К., Мусакаев Н.Г., Столповский М.В. Инжекция углекислого газа в газогидратный пласт с отрицательной температурой // Тезисы докладов XVII Всероссийского семинара с международным участием «Динамика многофазных сред», Новосибирск, 27 августа – 04 сентября 2021. Новосибирск: Параллель, 2021. С. 56.
ДИССЕРТАЦИИ
1. Мусакаев Э.Н. Эффективное решение задач идентификации моделей пластовых систем и управления заводнением нефтяных месторождений: диссертация на соискание ученой степени кандидата технических наук. Тюмень, 2021. 111 с. Специальность: 05.13.18 – Математическое моделирование, численные методы и комплексы программ. Диссертационный совет: Д 212.200.14, ФГАОУ ВО «Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина». Решение совета от 29 июня 2021 года № 144. Приказ Минобрнауки России от 28 октября 2021 года № 1104/нк-45 «О выдаче дипломов кандидата наук».
2022 год
На основе результатов численного моделирования предложена формула для апскейлинга проницаемости трещиновато-пористых сред, учитывающая их напряженно-деформированное состояние, структуру системы трещин, деформационные и фильтрационные свойства трещин.
В рамках модели пороупругой среды с дискретными трещинами выполнено моделирование фильтрации слабосжимаемой жидкости с учетом напряженно-деформированного состояния горной породы. Трещины при этом имели случайное положение и ориентацию, а распределение их длин подчинялось степенному закону. Рассмотрено множество вариантов систем трещин, полученных путем случайной генерации. На основе результатов численного моделирования предложена формула для апскейлинга проницаемости трещиновато-пористых сред, учитывающая их напряженно-деформированное состояние, структуру системы трещин, деформационные и фильтрационные свойства трещин.
На рисунке приведено сравнение зависимости эквивалентной проницаемости трещиновато-пористой среды от параметра перколяции при различных показателях степени «а» в степенном законе распределения длин трещин и ее расчета по предложенной формуле (рис. a), а также зависимости относительного изменения эквивалентной проницаемости среды от параметра перколяции при различных давлениях закачки жидкости и ее расчета по предложенной формуле (рис. б). Установлено, что фильтрационные свойства трещиновато-пористой среды определяются главным образом степенью связности системы трещин, характеризуемой параметром перколяции «p». Показано, что заметное влияние напряженно-деформированного состояния среды на ее фильтрационные свойства наблюдается для только связных систем трещин. Полученная формула хорошо аппроксимирует результаты компьютерного моделирования.
Рис. Зависимость эквивалентной проницаемости трещиновато-пористой среды от параметра перколяции при различных показателях степени «а» в степенном законе распределения трещин по длинам (а), при различных давлениях закачки жидкости (б). Закрашенные маркеры соответствуют случаю перколяции расчетной области, полые – отсутствию перколяционного кластера. Вертикальной пунктирной линией обозначено пороговое значению параметра перколяции pc. Сплошные линии – расчет по предложенной формуле.
1. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Методика численного моделирования волновых процессов в неоднородной гидратосодержащей пористой среде // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2022. Том 8. № 3 (31). С. 59-71. DOI: 10.21684/2411-7978-2022-8-3-59-71
2. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Скорость и поглощение линейных волн в пористых средах, насыщенных газом и его гидратом // Прикладная механика и техническая физика. 2022. Том 63. № 4 (374). С. 56-63. DOI: 10.15372/PMTF20220406
3. Косяков В.П., Легостаев Д.Ю. Использование машинного обучения для восстановления поля проницаемости элемента разработки нефтяного пласта в двумерной постановке // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2022. Том 8. № 2 (30). С. 129-149. DOI: 10.21684/2411-7978-2022-8-2-129-149
4. Косяков В.П., Мусакаев Э.Н., Гайдамак И.В. Применение инструментов прокси-моделирования для оценки коэффициента полезной закачки для нефтяного месторождения // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2022. Том 8. № 3 (31). С. 85-105. DOI: 10.21684/2411-7978-2022-8-3-85-105
5. Кусайко Г.Н., Игошин Д.Е., Губкин А.С. Анизотропия проницаемости в модельных пористых средах, образованных периодическими кубическими структурами // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2022. Том 8. № 2 (30). С. 101-114. DOI: 10.21684/2411-7978-2022-8-2-101-114
6. Мусакаев Н.Г., Бородин С.Л., Бельских Д.С. Алгоритм решения задачи о разложении гидрата метана в замкнутой гидратосодержащей области пористой среды // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2022. Том 8. № 1 (29). С. 40-57. DOI: 10.21684/2411-7978-2022-8-1-40-57
7. Borodin S.L., Musakaev N.G., Belskikh D.S. Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review. Mathematics. 2022. 10(24). 4674. DOI: 10.3390/math10244674
8. Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N. Numerical Simulation of Wave Propagation in a Fractured Porous Medium // Lobachevskii Journal of Mathematics. 2022. Vol. 43. No. 12. Pp. 65-71. DOI: 10.1134/S1995080222150094
9. Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N. Reflection and Transmission of Pressure Pulses Through a Gas Hydrate-Saturated Layer in a Porous Medium // Lobachevskii Journal of Mathematics. 2022. Vol. 43. No. 5. Pp. 1064-1068. DOI: 10.1134/S1995080222080108
10. Gubaidullin A.A., Pyatkova A.V. Specificities of Heat Transfer in a Vibrating Cylindrical Cavity at the Transition of the Exposure Frequency Through Resonance // Lobachevskii Journal of Mathematics. 2022. Vol. 43. No. 5. Pp. 1069-1075. DOI: 10.1134/S1995080222080121
11. Khasanov M.K., Kildibaeva S.R., Stolpovsky M.V., Musakaev N.G. Mathematical Model of the Process of Non-Equilibrium Hydrate Formation in a Porous Reservoir during Gas Injection // Mathematics. 2022. 10(21). 4054. DOI: 10.3390/math10214054
12. Musakaev N.G., Borodin S.L., Khasanov M.K. Mathematical Modeling of the Gas Hydrate Formation Process in a Porous Reservoir, Taking into Account Nonequilibrium Phase Transition // Lobachevskii Journal of Mathematics. 2022. Vol. 43. No. 5. Pp. 1171-1177. DOI: 10.1134/S1995080222080248
13. Musakaev N.G., Borodin S.L., Ogay V.A., Yushkov A.Yu., Vasilev M.A. Research of Upward Gas-Liquid Flows with Foam-Forming Surface-Active Substances in a Vertical Channel // AIP Conference Proceedings. 2022. 2528, 020003. DOI: 10.1063/5.0106418
14. Musakaev N.G., Khasanov M.K., Borodin S.L. Construction of an Analytical Solution of the Problem on the Formation of Gas Hydrate in a Porous Mine // Journal of Mathematical Sciences. 2022. Vol. 267. No. 6. Pp. 760-764. DOI: 10.1007/s10958-022-06166-3
КОНФЕРЕНЦИИ
1. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Математическое моделирование волновых процессов в насыщенных пористых средах // XXVΙ окружная научно-практическая конференция «Пути реализации нефтегазового потенциала Западной Сибири». г. Ханты-Мансийск, 22-25 ноября 2022 года.
2. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Взаимодействие импульса сжатия с газогидратосодержащим слоем в пористой среде // XI Всероссийская конференция «Фундаментальные и прикладные проблемы современной механики», посвящённая 60-летию Физико-технического факультета ТГУ, 13-17 апреля 2022 года, г. Томск.
3. Косяков В.П., Легостаев Д.Ю. Совместное использование теории фильтрации и элементов машинного обучения при решении обратной задачи восстановления фильтрационных параметров нефтяного месторождения // Проблемы Механики: теория, эксперимент и новые Технологии. Тезисы докладов XVI Всероссийской школы-конференции молодых ученых. Новосибирск, 14-17 марта 2022 года. С. 64-65.
4. Мусакаев Н.Г., Хасанов М.К., Бородин С.Л. Математическое описание процесса хранения природного газа в газогидратном состоянии в пористой среде // Тезисы докладов XVI Минского международного форума по тепло- и массообмену, Минск, 16-19 мая 2022. – Минск: Институт тепло- и массообмена им. А.В. Лыкова НАН Беларуси, 2022. – С. 1047-1049.
5. Simonov O.A., Filimnova L.N. Effect of the Maximum Density of Water on Cooling Rates of Water-Saturated Porous Media // International Conference on the Methods of Aerophysical Research. Novosibirsk, August 08-14, 2022. Pp. 155-156. DOI: 10.53954/9785604788974_155
ЗАРЕГИСТРИРОВАННЫЕ ПРОГРАММЫ ДЛЯ ЭВМ
1. Косяков В.П., Легостаев Д.Ю. Программный модуль для восстановления поля гидропроводности нефтяного месторождения на основе методов машинного обучения // Заявка № 2022664527, дата поступления 03.08.2022. Дата государственной регистрации в Реестре программ для ЭВМ 28.09.2022. № свидетельства о государственной регистрации программы для ЭВМ 2022667885.
ДИССЕРТАЦИИ
1. Бельских Д.С. Процесс теплового воздействия на гидратонасыщенную залежь с учетом разложения газового гидрата: диссертация на соискание ученой степени кандидата физико-математических наук. Тюмень, 2022. 95 с. Специальность: 1.3.14 – Теплофизика и теоретическая теплотехника. Диссертационный совет: 24.2.418.02 при ФГАОУ ВО «Тюменский государственный университет». Решение совета от 08 июня 2022 года № 9. Приказ Минобрнауки России от 25 октября 2022 года № 1370/нк «О выдаче дипломов кандидата наук».
2023 год
Проведено численное исследование процесса разработки газогидратного месторождения депрессионным и/или тепловым методом для случая зонально-неоднородного пласта.
Известно, что общемировые запасы природного газа в традиционной извлекаемой форме оцениваются примерно в 200 трлн. м3, а в газовых гидратах содержится по разным оценкам от 1 000 до 20 000 трлн. м3. Следовательно, газовые гидраты являются перспективным источником природного газа, что обуславливает актуальность теоретических исследований по разработке газогидратных месторождений. Проведено численное исследование процесса отбора газа из гидратонасыщенного пласта с зональной неоднородностью при депрессионном и тепловом воздействии. Изучены варианты размещения добывающей скважины в высоко- или низкопроницаемой зоне пласта, а также вариант размещения скважины в высокопроницаемой зоне с одновременным нагревом от скважины. Показано, что при размещении скважины в высокопроницаемой зоне разложение газогидрата происходит в протяженной объемной области и извлекается большее количество газа, чем при размещении скважины в низкопроницаемой зоне, при котором фазовый переход происходит практически на фронтальной поверхности. Для варианта с одновременным нагревом установлено, что тепловое воздействие на фоне депрессионного воздействия слабо влияет на динамику извлечения газа из пласта.
На рис. 1 приведена схема зонально-неоднородного гидратонасыщенного пласта. Он имеет цилиндрическую форму и состоит из двух кольцеобразных зон с различной проницаемостью k1 и k2. Граница r = rw – это граница отбора газа, на которой задаётся постоянное давление, которое ниже равновесного давления гидратообразования для начальной пластовой температуры. Таким образом, в пласте будет происходить разложение газового гидрата и выделение свободного газа с дальнейшим его отбором. На рис. 2 показано изменение со временем массы отобранного из пласта газа и массы оставшегося в пласте газового гидрата. При расположении добывающей скважины в высокопроницаемой зоне разложение газогидрата происходит в протяженной объемной области (рис. 3), фильтрация более интенсивная и, соответственно, отбор газа больше, чем при размещении скважины в низкопроницаемой зоне. Тепловое воздействие на фоне депрессионного воздействия не оказывает значительного влияния из-за низкой интенсивности кондуктивного теплопереноса в насыщенной пористой среде (рис. 3). Можно отметить, что при расположении добывающей скважины в высокопроницаемой зоне вблизи границы между высоко- и низкопроницаемой зонами образуется участок с пониженным значением гидратонасыщенности, что связано с притоком тепла из низкопроницаемой зоны за счет теплопроводности.
Рис. 1. Схематичное представление рассматриваемого газогидратного пласта
(в расчетах приняты следующие значения радиусов: rw = 0,1 м r1 = 10 м, R = 100 м).
Рис. 2. Изменение со временем массы на единицу высоты пласта извлеченного метана (MeCH4) и массы оставшегося гидрата метана в пласте (Mh).
Линии 1 – при расположении добывающей скважины в высокопроницаемой зоне (k1 = 10-14 м2 и k2 = 10-16 м2); линии 2 – при расположении добывающей скважины в низкопроницаемой зоне (k1 = 10-16 м2 и k2 = 10-14 м2); линии 3 – при расположении добывающей скважины в высокопроницаемой зоне (k1 = 10-14 м2 и k2 = 10-16 м2) и температуре, равной 50 °C, на границе r = rw.
Рис. 3. Распределения по радиальной координате r давления p, температуры T и гидратонасыщенности Sh через 30 суток после начала извлечения газа.
Левый столбец графиков соответствует расположению добывающей скважины в высокопроницаемой зоне (k1 = 10-14 м2, k2 = 10-16 м2); средний – расположению добывающей скважины в низкопроницаемой зоне (k1 = 10-16 м2, k2 = 10-14 м2); правый – расположению добывающей скважины в высокопроницаемой зоне (k1 = 10-14 м2, k2 = 10-16 м2) и температуре, равной 50 °C, на границе r = rw. Штриховая линия – равновесная температура разложения газогидрата, соответствующая пластовому давлению.
1. Лебедев В.И., Мусакаев Э.Н., Мусакаев Н.Г., Родионов С.П. Интегрированная модель «пласт-скважина» на основе D-CRMP // Известия высших учебных заведений. Нефть и газ. – 2023. – № 6. – С. 35-46. https://doi.org/10.31660/0445-0108-2023-6-11-35-46
2. Легостаев Д.Ю., Косяков В.П. Моделирование добычи жидкости и динамики обводненности при совместном использовании фильтрационной модели и нейронных сетей // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. – 2023. – Том 9, № 2 (34). – С. 75-92. https://doi.org/10.21684/2411-7978-2023-9-2-75-92
3. Легостаев Д.Ю., Родионов С.П. Численное исследование влияния структуры системы трещин на фильтрацию жидкости в пороупругой среде // Известия Российской академии наук. Механика жидкости и газа. – 2023. – № 4. – С. 93-107. https://doi.org/10.31857/S1024708422600543
4. Мусакаев Н.Г., Бельских Д.С. Численное исследование процесса добычи газа из газогидратной залежи при наличии термического и депрессионного воздействия // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. – 2023. – Том 9, № 3 (35). – С. 83-99. https://doi.org/10.21684/2411-7978-2023-9-3-83-99
5. Мусакаев Н.Г., Огай В.А., Юшков А.Ю., Бородин С.Л. Повышение эффективности использования поверхностно-активных веществ для выноса жидкости с забоя газовой скважины // Нефтепромысловое дело. – 2023. – № 6 (654). – С. 39-42. https://doi.org/10.33285/0207-2351-2023-6(654)-39-42
6. Мусакаев Н.Г., Родионов С.П., Лебедев В.И., Мусакаев Э.Н. Решение обратной задачи в рамках модели D-CRMP с учетом прогнозных свойств // Известия высших учебных заведений. Нефть и газ. – 2023. – № 2. – С. 62-82. https://doi.org/10.31660/0445-0108-2023-2-62-82
7. Симонов О.А., Филимонова Л.Н. Численное моделирование фазового перехода «вода – лед» в высокопроницаемых водонасыщенных пористых средах // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. – 2023. – Том 9, № 1 (33). – С. 22-38. https://doi.org/10.21684/2411-7978-2023-9-1-22-38
8. Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N. Approach to the Numerical Study of Wave Processes in a Layered and Fractured Porous Media in a Two-Dimensional Formulation // Mathematics. – 2023. – 11(1). – 227. https://doi.org/10.3390/math11010227
9. Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N. Compression Pulse Propagation in Fractured Porous Medium // Lobachevskii Journal of Mathematics. – 2023. – Vol. 44, No. 11. – P. 4987-4993. https://doi.org/10.1134/S1995080223110161
10. Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N. Pressure Pulse Transmission and Reflection from Layer in Porous Medium with Variable Initial Content of Gas Hydrate // Lobachevskii Journal of Mathematics. – 2023. – Vol. 44, No. 5. – P. 1650-1656. https://doi.org/10.1134/S1995080223050232
11. Gubaidullin A.A., Pyatkova A.V. The Effects of Heat Transfer through the Ends of a Cylindrical Cavity on Acoustic Streaming and Gas Temperature // Mathematics. – 2023. – 11(8). – 1840. https://doi.org/10.3390/math11081840
12. Khasanov M.K., Borodin S.L., Stolpovsky M.V. Self-Similar Solution of the Problem of Superheated Water Vapor Injection into a Porous Reservoir // Lobachevskii Journal of Mathematics. – 2023. – Vol. 44, No. 5. – P. 1707-1713. https://doi.org/10.1134/S1995080223050347
13. Khasanov M.K., Musakaev N.G., Stolpovksy M.V. Injection of Carbon Dioxide into a Gas Hydrate Reservoir with a Negative Temperature // AIP Conference Proceedings. – 2023. – 2504. – 030108. https://doi.org/10.1063/5.0132416
14. Kosyakov V.P. Investigation of the Influence of Weight Coefficients in Solving the Problem of Permeability Identification for an Oil Field // Lobachevskii Journal of Mathematics. – 2023. – Vol. 44, No. 5. – P. 1721-1727. https://doi.org/10.1134/S1995080223050360
15. Musakaev N.G., Borodin S.L. Numerical Study of the Process of Gas Extraction from a Gas Hydrate Reservoir with Inhomogeneous Permeability // Lobachevskii Journal of Mathematics. – 2023. – Vol. 44, No. 5. – P. 1765-1770. https://doi.org/10.1134/S199508022305044X
16. Musakaev N.G., Borodin S.L., Khasanov M.K. Numerical Study of the Injection of Carbon Dioxide into a Reservoir Saturated with Methane Hydrate at Temperatures below Zero // AIP Conference Proceedings. – 2023. – 2504. – 030039. https://doi.org/10.1063/5.0132395
КОНФЕРЕНЦИИ
1. Бородин С.Л., Мусакаев Н.Г. Извлечение метана из газогидратного пласта с вертикальными слоями с различной проницаемостью // XIII Всероссийский Съезд по теоретической и прикладной механике : сборник тезисов докладов в 4 томах, 21–25 августа, 2023 г. Т. 2. Механика жидкости и газа. – СПб. : ПОЛИТЕХ-ПРЕСС, 2023. –1348 с. С. 1113-1115.
2. Бородин С.Л., Хасанов М.К. Математическое моделирование закачки водяного пара в пласт, изначально насыщенный метаном и его газогидратом // XIII Всероссийский Съезд по теоретической и прикладной механике : сборник тезисов докладов в 4 томах, 21–25 августа, 2023 г. Т. 2. Механика жидкости и газа. – СПб. : ПОЛИТЕХ-ПРЕСС, 2023. –1348 с. С. 1110-1112.
3. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Взаимодействие импульса сжатия с газогидратосодержащим слоем в пористой среде // Международная научная конференция «Математическая физика, механика и их приложения», посвященная 75-летию академика АН РБ В.Ш. Шагапова. Стерлитамак, 22-23 июня 2023 года.
4. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Волны в гидрат содержащих пористых средах // XIII Всероссийский Съезд по теоретической и прикладной механике : сборник тезисов докладов в 4 томах, 21–25 августа, 2023 г. Т. 2. Механика жидкости и газа. – СПб. : ПОЛИТЕХ-ПРЕСС, 2023. –1348 с. С. 948-950.
5. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Отражение волны сжатия от гидратосодержащего слоистого участка в пористой среде // Сборник материалов Международной научной конференции «Комплексный анализ, математическая физика и нелинейные уравнения», оз. Банное, 13-17 марта 2023. – Уфа: Аэтерна, 2023. – С. 46. https://matem.anrb.ru/conf/bannoe23.pdf
6. Губайдуллин А.А., Болдырева О.Ю., Дудко Д.Н. Распространение волн давления в пористой среде, содержащей слои с газовым гидратом // Международная научно-практическая конференция «Рахматулинские чтения». 26-27 мая 2023 г. Ташкент.
7. Легостаев Д.Ю., Косяков В.П. Применение нейронных сетей и теории фильтрации для восстановления поля проницаемости и расчета добычи нефти // Проблемы механики: теория, эксперимент и новые технологии: тезисы докладов XVII Всероссийской школы-конференции молодых ученых (26 февраля – 6 марта 2023 г., Новосибирск – Шерегеш). Новосиб. гос. ун-т. – Новосибирск : ИПЦ НГУ, 2023. С. 111-112. http://conf.nsc.ru/files/styles/712537/ITPM_14_02_2023_interactive_s_oblozhkoy.pdf
8. Мусакаев Н.Г., Бородин С.Л. Исследование процесса разложения газогидрата в неоднородном по проницаемости пласте // Тезисы докладов участников Третьей международной летней конференции «Физико-химическая гидродинамика: модели и приложения», г. Уфа, 25-30 июня 2023. – г. Уфа: БашАльфаПринт, 2023. – С. 71.
9. Мусакаев Н.Г., Бородин С.Л., Огай В.А., Гималтдинов И.К. Математическое моделирование течения газожидкостной смеси с пенообразователями в вертикальном канале // Тезисы докладов участников Третьей международной летней конференции «Физико-химическая гидродинамика: модели и приложения», г. Уфа, 25-30 июня 2023. – г. Уфа: БашАльфаПринт, 2023. – С. 72.
10. Мусакаев Н.Г., Бородин С.Л., Огай В.А., Юшков А.Ю. Изучение восходящего двухфазного течения в газовой скважине применительно к проблеме накопления жидкости на забое // Сборник материалов Международной научной конференции «Комплексный анализ, математическая физика и нелинейные уравнения», оз. Банное, 13-17 марта 2023. – Уфа: Аэтерна, 2023. – С. 76. https://matem.anrb.ru/conf/bannoe23.pdf
11. Мусакаев Н.Г., Огай В.А., Юшков А.Ю. Экспериментальное исследование восходящего газожидкостного потока в газовой скважине // Бурение и нефть. 2023. № S2. С. 139-140.
МОНОГРАФИИ, УЧЕБНИКИ, УЧЕБНЫЕ ПОСОБИЯ
1. Восходящее течение газожидкостной смеси в скважине в присутствии поверхностно-активных веществ : монография / Н. Г. Мусакаев, В. А. Огай, А. Ю. Юшков, С. Л. Бородин. – Тюмень : ТИУ, 2023. – 160 с. – Текст : непосредственный.